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CONSERVATIVE MONOTONE STREAMLINE UPWIND 
FORMULATION USING SIMPLEX ELEMENTS 
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SUMMARY 
A streamline upwind formulation is presented for the treatment of the advection terms in the general 
transport equation. The formulation is monotone and conservative and is based on the discontinuous nature 
of the advection mechanism. The results of three benchmark test cases for the full range of flow Peclet 
numbers are presented. The new formulation is shown to accurately model the advection phenomenon with 
significantly smaller numerical diffusion than the existing methods. The results are also free of all spatial 
oscillations. Considerable savings in computer storage and execution time have been achieved by employing 
the three-noded triangular element for which exact integrations exist. The formulation is straightforward 
and can be readily incorporated into any finite element code using the conventional Galerkin approach. 
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1. INTRODUCTION 

The numerical treatment of the advection phenomenon is still attracting considerable research 
interest. Numerical modellers are constantly looking for more stable, accurate and efficient 
approximations to the first-order non-linear advective terms in the general transport equation. 
Initial attempts to treat such terms by central difference operators in the finite difference method 
(FDM) resulted in spurious oscillations for cases with grid Peclet numbers greater than 2.0. This 
shortcoming has, to varying degrees, been alleviated by the use of the exponential and hybrid 
schemes,' the power-law scheme,2 the higher-order upwind differencing (HOU) ~ c h e m e , ~ . ~  the 
quadratic upwind (QUICK) scheme' and the streamline upwind scheme.6 Unfortunately, all 
these schemes and their variants produce numerical diffusion and/or spatial oscillations to 
varying extents. Advection modelling continues to remain one of the central issues in the FDM.7 

The finite element method (FEM) is experiencing similar difficulties. The conventional 
Galerkin weighted residual approach, akin to the central difference operator, produces un- 
acceptable levels of numerical diffusion and spatial oscillations. The streamline upwind/Petrov- 
Galerkin (SUPG) scheme,"' with good stability properties, dampens the numerical dispersion 
and results in faster convergence rates than the other upwind methods. The levels of spatial 
oscillations produced by SUPG, however, means its exclusion from applications where boundary 
and internal layers are present. More stable solutions may be obtained by the use of monotone 
methods.", ' ' These methods, however, generally violate the conservation laws, resulting in 
global imbalance of the transported quantities. Discontinuity-capturing versions of SUPG'2-'5 
have been implemented for multidimensional situations to give improved stability. However, this 
is only attainable at the expense of the cross-wind diffusion reappearing in the final solution. 
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Nevertheless, the FEM generally produces less numerical diffusion than the FDM16, l 7  owing to 
the fact that the former can operate in the resultant velocity direction as opposed to the locally 
one-dimensional approach usually adopted in the FDM. 

In this paper we have reverted to monotone techniques because of their simplicity, efficiency 
and ease with which they can be implemented in multidimensional situations. In particular, close 
examination of the monotone streamline upwind (MSU) approximation'' reveals that a conser- 
vative form of the method could be developed for simplex triangular elements. The original non- 
conservative MSU was developed in conjunction with bilinear rectangular elements. For purely 
diffusive problems these elements, depending on their aspect ratios, may lead to a non-diagonally 
dominant global coefficient matrix. This in turn prohibits the use of iterative solvers, which are 
much more efficient than their direct counterparts. The simplex elements on the other hand, 
owing to their shape function properties, will result in diagonally dominant global coefficient 
matrices. Also, exact integrations can be used for simplex elements, which reduce the computer 
storage and run time requirements. Furthermore, complete triangularization of any arbitrary 
domain in space is possible. 

The detailed derivation of the current formulation and its application to three benchmark test 
cases are presented in the rest of this paper. The results show minimum levels of numerical 
diffusion in the absence of spatial oscillations across the entire flow Peclet number range. 

2. CONSERVATIVE MONOTONE STREAMLINE UPWIND FORMULATION 

Here only the two-dimensional form of the formulation is presented. Its extension to three 
dimensions will be carried out in the near future. The conservative form of the general steady state 
transport equation for a scalar quantity 4 in two-dimensional Cartesian co-ordinates (with the 
usual notation) is 

In solving the above equation, a known velocity field was assumed to have been established. The 
finite element discretization begins by subdividing the domain of interest into three-noded 
triangular elements as shown in Figure 1. Variations in 4 within the elemeat are described by 

4 = Li4i+ L j 4 j +  L k 4 k ,  Li + Lj + L, = 0. (2) 

k 

Y 

t I 

Figure 1. Simplex elements with natural co-ordinates 
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At the elemental level equation (1) is weighted and integrated over the element area; hence 

The diffusion and source terms are treated by the conventional Galerkin weighted residual 
approach.'* The treatment of the advection terms, which is the subject of this paper, can be 
demonstrated by rewriting equation (3) as 

where the constant on the right-hand side is due to the combined effect of the diffusion and source 
terms. Expressing the above equation in terms of the streamline co-ordinates shown in Figure 2, 

N (L(pu.B))dA' = constant, 

where the two-dimensional advection problem in equation (4) is now reduced to a one- 
dimensional equation describing the local derivative of pu,4 along the segment of a streamline 
contained within an element, with s being the tangential streamline co-ordinate. Equation (5) 
states that in the absence of the diffusion and source terms, the quantity pu,4 is transported 
unchanged along the streamline segment from an upstream point to downstream locations. This 
is an important observation and one that is reflected in the present formulation. To evaluate the 
above integral, it is first assumed that within an element 

a 
- ( p u s $ )  = constant. (6) as 

Note that for the special case of pure advection the constant in the above equation is equal to 
zero. Using equation (6), equation (5) can now be simplified to 

n 

where A, is the sum of shape function integrals of elements surrounding a node. The derivative 
term in equation (7) is evaluated by considering the streamlines passing through an element 
positioned in the flow field as illustrated in Figure 3. As shown in this figure, node i is a 
'downwind' node for which the negative of the velocity vector usi points back into the element. 
For any element there are four possible streamline-element configurations as illustrated in 

1 Y 

1 

Figure 2. Streamline co-ordinates 
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Figure 3. Downwind node illustration 

la) lbl 

(C) Id1 

Figure 4. Possible streamline-element configurations: (a) one downwind node; (b)-{d) no downwind nodes 

Figure 4. For elements situated in the core of the flow (Figures qa )  and qb)) there may exist one, 
and only one, downwind node (Figure 4(a)). For elements with one or two sides lying along the 
solid boundaries (Figures 4(c) and qd)) no such downwind node exists. As shown in Figure 5, on a 
given element a downwind node is identified by 

~iAyik-  viA~ik),O, uiAyij- ~iAxij>/O. (8) 
Once a downwind node has been identified, the interception of the streamline passing through 

that node with the opposite side is located. As shown in Figure 6, this interception takes place on 
side j k  at the ‘upstream’ location with co-ordinates x’ and y’, which are calculated by employing 
the interpolation factor F ,  expressed as 

F ,  = +(F’, + F;) .  (9) 
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Figure 5. Downwind node identification 

'streamline 

Figure 6. Determination of upstream location 

Here PI, and FE are obtained by considering the normal mass flow rates across the element sides, 
i.e. with reference to Figure 6 

, FL=l-Max 

where 

F..= 11 - pV dx + 1 p U  dy, F j k  = - (1 - pv dx + 6 pU d y ), 
F k i  = JI - p~ dx + j: PU dy. (1 1) 

It is seen from equations (9) and (10) that F, is made to vary between zero and unity in order to 
locate the upstream point along side j k .  In Figure 6 x' and y' are calculated as 

X' = (1 - F , ) X j  FpXk, y' = (1 - Fp)yj + Fpy,. (12) 
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Hence the upstream location coincides with nodej when F ,  = 0 and with node k when Fp = 1. For 
values of F ,  between zero and unity the upstream location would lie somewhere along side j k  
between nodesj and k. Other element variables at  the upstream location can also be calculated in 
a similar fashion: 

d,’ = (1 - F p )  4j + Fp d,k> p‘ = (1 - F p )  pj + F p  pk, u6 = (1 - Fp) usj + Fp u&. (1 3) 

With the above definitions, the advection integral (equation (7)) for the element shown in 
Figure 6 is finally approximated to 

with 
I 2 l/Z. AS = [ (x i  - x’)’ + (yi - y ) ] 

In equation (14) the derivative term is approximated conservatively by simply assuming the 
quantity pud, to vary linearly along the streamline segment within the element. Alternatively, this 
approximation can be performed more accurately by considering p, u and d, to each vary linearly 
along the streamline segment. For the test cases that are considered in this paper, the latter made 
negligible changes to the final results. However, it must be noted that for flow cases where steep 
gradients in the fluid properties may exist, or where only a limited number of elements can be 
used, the latter approximation may prove necessary. Also, as can be seen from the above 
formulation, determination of the upstream location, although it accounts for the streamline 
curvature within the element, evaluates the length of the streamline segment As as a straight line. 
The original MSU” considers this point and the authors express negligible gain when using a 
quadratic arc as opposed to the straight line. 

With equations (14) and (15) the advection contribution to the element coefficient matrix can 
now be constructed. Table I shows the coefficient matrix arising from pure advection for the 
element shown in Figure 6. Note that the current formulation ensures a diagonally dominant 
element coefficient matrix, irrespective of the element size and orientation and regardless of the 
flow Peclet number. The global coefficient matrix may now be assembled by considering the 
contributions of all elements. 

Table I. Element coefficient matrix for pure advection 

1 
-+ column 

1 J k 

row 
1 

J 

k 
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3. TEST CASE RESULTS 

3.1. Pure advection skew to mesh 

This test case has been commonly employed to examine candidate techniques for the treatment 
of the advection 12,  19-" The flow domain together with the boundary conditions are 
shown in Figure 7. The variation in 4 along the exit plane (0 < S < 2) is investigated for the case of 
pure advection (Pe  = 00) for three flow angles, 9 = 22.5", 45" and 67.5". To be consistent with 
previous works, the domain is subdivided into 11 equally spaced rows and columns, resulting in a 
regular mesh with 121 nodes and 200 elements as shown in Figure 8. The exact solution to this 
problem is determined by advecting the upwind boundary conditions to the exit plane, taking 
into account the linear interpolation of 4 between the nodes. 

Figures 9(ak9(c) show the results of the current work in comparison with previously published 
results. It is seen that the current formulation exhibits no spatial oscillations and shows the least 

Y 

Flow direction 

P 
S 

5-0.2 

s-0.0 
\ 

Y 

$= 1 

Figure 7. Pure advection skew to mesh 

Figure 8. Computational grid for pure advection skew to mesh 
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Figure 9. Comparison of results for pure advection skew to mesh: E, exact; SU1, streamline upwind8 SU2, streamline 
upwind;' U, standard upwind;" G, Galerkin; MSU, monotone streamline upwind;" @=(a) 2 2 9 ,  (b) 45", (c) 67.5" 
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Figure 9. (Continued) 
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Figure 10. Smith and Hutton test case 

8=22.5", 45" and 67-5" respectively. The performance of MSU is very similar to that of the 
current formulation. 

3.2. Smith and Hutton test case 

This case was first proposed as a comparison exercise.16 The flow domain together with the 
boundary conditions are shown in Figure 10 and illustrate two important features: (a) the 
streamlines show a large degree of curvature, which is a general feature of all recirculating flows; 
(b) the variation in 4 at the inlet is highly non-linear, which may have resulted from the presence 
of a source or mixing of two streams at differing values of 4. 
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distance from origin at outlet 
(b) 

Figure 11. Comparison of results for Smith and Hutton test case: E, reference; HUD, hybrid upwind differencing; MSU, 
monotone streamline upwind;" Pe = (a) 100, (b) 00 

The flow domain was divided into 11 rows and 21 columns, resulting in 231 equally spaced 
nodes and 400 elements. The present analysis was carried out for Pe = 100 and co. Figures ll(a) 
and ll(b) show the comparisons between the current results and those of previous workers 
against the reference solution provided in the Smith and Hutton comparison exercise.16 Equation 
(16) is used to calculate the percentage false diffusion, with c#Ireference used in place of c#Iexact. At 
Pe = 100 both the advection and diffusion mechanisms are effective as is seen from Figure ll(a). 
The current formulation shows the least false diffusion in the absence of spatial oscillation. The 
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Figure 12. Rotating disk 

present results compare well against the best of the past results, with a maximum of 9% false 
diffusion. Ideally, at Pe = 03 the inlet profile must be carried undisturbed to the outlet plane. 
Figure ll(b) shows the outlet profile using the present formulation against those of other 
methods, exhibiting no spatial oscillations and a maximum numerical diffusion of 27%. MSU 
produces similar results to those of the present formulation. 

3.3. Rotating disk 

The last test case modelled is that of pure advection transport in a rotating flow field cited in 
past The flow field and the boundary conditions are depicted in Figure 12; 
4 assumes a cosine variation along line OA. The exact solution to this problem is obtained by 
advecting the +profile, along line OA, undisturbed around the square. In compliance with 
previous works,8312 the domain is subdivided into 31 equally spaced rows and columns, 
producing 961 nodes and 1800 elements. 

Figure 13 compares the present results with the best of previously published results. SU2 shows 
no false diffusion and reproduces the exact solution. MSU has 11 YO false diffusion (equation (16)) 
and shows some degradation in the results at radial distances of 0033 and 0.467 from the origin. 
The present formulation has a maximum of 9% false diffusion with degradation in computed 4 at 
a radial distance of 0.467 from the origin. 

4. CONCLUDING REMARKS 

A new streamline upwind formulation using simplex elements has been presented. The upwinding 
is monotone and conservative and is shown to accurately capture the discontinuous nature of the 
advection phenomenon. The upwinding is discontinuous not only amongst the elements but also 
within each individual element, since only the downwind node receives the advection contribu- 
tion. The formulation is equally applicable for all values of flow Peclet number. Its application to 
three stringent test cases shows that the formulation is free of all spatial oscillations and produces 
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Figure 13. Comparison of &profile along line OB E, exact; SU2, streamline upwind;' MSU, monotone streamline 
upwind' ' 

minimum levels of numerical diffusion, comparing well against the best of: previous methods. For 
the case of advection skew to mesh and the Smith and Hutton test case the numerical diffusion is 
limited to the step discontinuity, where sharp changes in the imposed scalar field are present. This 
is in contrast to the QUICK s ~ h e m e , ~  where the numerical diffusion is present along the outlet 
plane. The degree of numerical diffusion for these test cases is less than for most of the other 
techniques considered here. For the case of a rotating disk, SU2 reproduced the exact results 
whereas the current formulation exhibited some numerical diffusion. However, it must be noted 
that SU2 suffered from spatial oscillations in the first two test cases. 

Diagonal dominance is always ensured by the current formulation so that any iterative 
solution technique could be used for solving the resulting system of linear equations. In 
particular, the novel fast iterative solver employed for this work was a variant of the TDMA 
procedure which was specifically adopted for the FEM.23 The iterative solver only required the 
storage of the non-zero elements of the global coefficient matrix. Also, the solution sequence was 
unaffected by the global node and element numbering used to define the computational mesh. By 
sweeping along the direction of maximum change, fast convergence rates were obtained which 
reduced the computation times considerably. 

The use of linear triangular elements allowed exact and efficient evaluation of the element 
integrals. This contrasts with the numerical integrations adopted by the finite element fraternity. 
Both the advection and diffusion calculations took on average 0.10 ms per element on a Digital 
VAX-8550 machine. By employing exact element integrations and iterative solution techniques, 
the overall finite element code required minimum computer storage and execution time. For 
example, the Smith and Hutton test case took 3.78 s to complete on the above machine. This was 
the collective time spent on mesh generation, matrix set-up and solution for both Pe = 100 and 00 

together. Since the present formulation uses the Galerkin element weighting function for the 
advection terms, it can be incorporated into any of the conventional Galerkin-type finite element 
codes. 
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